<p style='text-indent:20px;'>In this paper, we propose a conservative semi-Lagrangian finite difference (SLFD) weighted essentially non-oscillatory (WENO) scheme, based on Runge-Kutta exponential integrator (RKEI) method, to solve one-dimensional scalar nonlinear hyperbolic equations. Conservative semi-Lagrangian schemes, under the finite difference framework, usually are designed only for linear or quasilinear conservative hyperbolic equations. Here we combine a conservative SLFD scheme developed in [<xref ref-type="bibr" rid="b21">21</xref>], with a high order RKEI method [<xref ref-type="bibr" rid="b7">7</xref>], to design conservative SLFD schemes, which can be applied to nonlinear hyperbolic equations. Our new approach will enjoy several good properties as the scheme for the linear or quasilinear case, such as, conservation, high order and large time steps. The new ingredient is that it can be applied to nonlinear hyperbolic equations, e.g., the Burgers' equation. Numerical tests will be performed to illustrate the effectiveness of our proposed schemes.</p>
Read full abstract