A hybrid receptor-sensor for anions originating from the merging of positively charged ammonium moieties for electrostatic attraction/stronger binding of azacrowns with directionality of calixpyrrole hydrogen bond donors for selectivity is investigated. As demonstrated this hybrid receptor-sensor shows a remarkable selectivity for orthophosphate even in the presence of other phosphates and anions found in cellular materials (Kassoc H2PO4 ->H2P2O7 2->AMP-≫ADP2- or ATP3- over halides, nitrate, or hydrogen sulfate; all Na+ salts in water) but also cellular polyphosphate or phospholipids. This selectivity is harnessed in a real-time monitoring of cell lysis by lysozyme, which releases orthophosphate and other phosphates and anions from the cells. This sensitive (LOD 0.4 μM) fluorescence-based microscale method compares favorably with the state-of-the-art techniques but can easily be practiced in a high-throughput screening (HTS) manner. The anion binding and selectivity in aqueous solutions were investigated by NMR and put in context with phosphate binding of the parent calix[4]pyrrole. The microscopic understanding of anion binding by the hybrid receptor was then obtained from a combination of density functional theory (DFT), classical molecular dynamics (MD) with explicit water solvation, and ab initio MD (AIMD) simulations. Correlating the NMR and fluorescence binding data with studies of solvation of the receptor, phosphate anion, and the resulting complex confirms the binding is largely driven by entropic component (TΔS) associated with receptor and anion desolvation.
Read full abstract