In this paper, the propagation of Rayleigh waves in orthotropic non-viscous fluid-saturated porous half-spaces with sealed surface-pores and with impervious surface is investigated. The main aim of the investigation is to derive explicit secular equations and based on them to examine the effect of the material parameters and the boundary conditions on the propagation of Rayleigh waves. By employing the method of polarization vector the explicit secular equations have been derived. These equations recover the ones corresponding to Rayleigh waves propagating in purely elastic half-spaces. It is shown from numerical examples that the Rayleigh wave velocity depends strongly on the porosity, the elastic constants, the anisotropy, the boundary conditions and it differs considerably from the one corresponding to purely elastic half-spaces. Remarkably, in the fluid saturated porous half-spaces, Rayleigh waves may travel with a larger velocity than that of the shear wave, a fact that is impossible for the purely elastic half-spaces.