The transient dynamic characteristic of a tire, which has a significant effect on vehicle handling stability and ride comfort, is difficult to study in detail because of its highly non-linear behavior. In this study, the transient dynamic characteristics of a non-pneumatic wheel, called the mechanical elastic wheel (MEW), which was rolling over a ditch were investigated by the explicit dynamic finite element (FE) method. A three-dimensional FE model of MEW considering geometric nonlinearity, material nonlinearity and large contact deformation between the wheel and the road, was established. For the validation of the accuracy and reliability of the FE model of MEW, the simulation and the experimental results of the radial stiffness and footprint of MEW were compared and analyzed. A dynamic simulation of the validated FE model of MEW rolling over a ditch was conducted using the ABAQUS/Explicit program. The equivalent stress and the contact stress generated during the process of the rolling MEW impacting the ditch were studied in detail. The effect of the rolling speed on the transient dynamic characteristics was also analyzed based on the simulation results. The simulation results could provide guidance for the optimization of the MEW structure and vehicle dynamics.
Read full abstract