Rare and ultra-rare diseases constitute a significant medical challenge due to their low prevalence and the limited understanding of their origin and underlying mechanisms. These disorders often exhibit phenotypic diversity and molecular complexity that represent a challenge to biomedical research. There are more than 6000 different rare diseases that affect nearly 300 million people worldwide. However, the prevalence of each rare disease is low, and in consequence, the biomedical resources dedicated to each rare disease are limited and insufficient to effectively achieve progress in the research. The use of animal models to investigate the mechanisms underlying pathogenesis has become an invaluable tool. Among the animal models commonly used in research, Drosophila melanogaster has emerged as an efficient and reliable experimental model for investigating a wide range of genetic disorders, and to develop therapeutic strategies for rare and ultra-rare diseases. It offers several advantages as a research model including short life cycle, ease of laboratory maintenance, rapid life cycle, and fully sequenced genome that make it highly suitable for studying genetic disorders. Additionally, there is a high degree of genetic conservation from Drosophila melanogaster to humans, which allows the extrapolation of findings at the molecular and cellular levels. Here, I examine the role of Drosophila melanogaster as a model for studying rare and ultra-rare diseases and highlight its significant contributions and potential to biomedical research. High-throughput next-generation sequencing (NGS) technologies, such as whole-exome sequencing and whole-genome sequencing (WGS), are providing massive amounts of information on the genomic modifications present in rare diseases and common complex traits. The sequencing of exomes or genomes of individuals affected by rare diseases has enabled human geneticists to identify rare variants and identify potential loci associated with novel gene-disease relationships. Despite these advances, the average rare disease patient still experiences significant delay until receiving a diagnosis. Furthermore, the vast majority (95%) of patients with rare conditions lack effective treatment or a cure. This scenario is enhanced by frequent misdiagnoses leading to inadequate support. In consequence, there is an urgent need to develop model organisms to explore the molecular mechanisms underlying these diseases and to establish the genetic origin of these maladies. The aim of this review is to discuss the advantages and limitations of Drosophila melanogaster, hereafter referred as Drosophila, as an experimental model for biomedical research, and the applications to study human disease. The main question to address is whether Drosophila is a valid research model to study human disease, and in particular, rare and ultra-rare diseases.
Read full abstract