This paper investigates the critical aspect of synchronization in wireless sensor networks (WSNs) across diverse industrial applications. The low-cost sensor network topologies are analyzed. The communication delay measurements and quantitative jitter analysis are performed under different conditions, and dependencies of the propagation time delay on the data bitrate and modulation type for different hardware implementations of the WSNs are presented. The time delay distribution influence on the time synchronization error propagation over WSN layers was assessed from the experimental probability density functions. The network synchronization based on the controlled propagation delay jitter approach has been proposed. This research contributes quantitative insights into the complexities of synchronization in WSNs, offering a foundation for optimizing network configurations and parameters to extend the operational life of low-power sensor nodes.
Read full abstract