BackgroundSpecies generally exhibits evolutionary bias, adapting towards a specific direction rather than others, yet the underlying causes remains unknown.ResultsHere, we investigated evolutionary bias and its causes by conducting experimental evolution on Escherichia coli. We introduced an E. coli strain (lac-), initially unable to utilize lactose due to a frameshift mutation, into two different culture media: one medium (L) containing ample sodium acetate and lactose as carbon sources, and the other medium (G) containing abundant glucose and lactose as carbon sources. After 20 days of experimental evolution, our findings revealed that all L-populations underwent parallel evolution through reverse mutation to utilize lactose (lac+), resulting in a relatively higher fitness gain compared to utilizing sodium acetate. In contrast, all G-populations did not transition towards lactose utilization but instead continued to utilize glucose, which provides a higher fitness gain than utilizing lactose. These results demonstrate that our experimental populations in L and G media respectively exhibit biased evolution towards utilizing different carbon sources, yet all trajectories converge towards higher fitness gains. When lac+ (lactose-eater) and lac- (acetate-eater) were co-cultured in L medium, all lac- individuals were eventually eliminated, while lac + individuals were consistently selected and retained.ConclusionsOur findings indicate that species tend to evolve with a bias towards directions that offer higher fitness gains, partly because high-fitness-gain directions competitively exclude low-fitness-gain directions.
Read full abstract