Microelectronic circuits usually contain small voids or cracks, and if those defects are large enough to sever the line, they cause an open circuit. A fully practical finite element method for the temporal analysis of the migration of voids in the presence of surface diffusion, electric loading and elastic stress is presented. We simulate a bulk–interface coupled system, with a moving interface governed by a fourth-order geometric evolution equation and a bulk where the electric potential and the displacement field are computed. The method presented here follows a fitted approach, since the interface grid is part of the boundary of the bulk grid. A detailed analysis, in terms of experimental order of convergence (when the exact solution to the free boundary problem is known) and coupling operations (e.g., smoothing/remeshing of the grids, intersection between elements of the two grids), is carried out. A comparison with a previously introduced unfitted approach (where the two grids are totally independent) is also performed, along with several numerical simulations in order to test the accuracy of the methods.
Read full abstract