In this paper, the effect of kissing bond on nonlinear dynamic behavior of structures with flexible adhesive joint is investigated. Bilinear characteristic due to opening and closing in kissing bond region results in nonlinear dynamic behavior of the structure such as harmonic distortion in response to harmonic excitation. So, the higher-order harmonics can be considered as Nonlinear Damage Indicator Functions (NDIF) for the purpose of damage identification. A two-dimensional (2D) finite element model of a beam connected to a rigid support via a flexible adhesive layer is used to investigate the efficiency of the proposed NDIFs in kissing bond detection. Kissing bond is introduced to the model via contact elements. NDIFs are extracted for the finite element model using single tone stepped-sine test simulation. Parameters such as amplitude of excitation, size and location of kissing bond region as well as friction between kissing surfaces, are studied. The results proved that the NDIFs are sensitive to the size and location of kissing bond. Consequently, in an experimental damage identification procedure, NDIFs can be used as an indicator of kissing bond type damages in adhesive joints.