BackgroundSinter is a primary feedstock for blast furnace-based ironmaking. Recently, the proportion of low-grade iron ore, which contains a high amount of gangue (mainly SiO2), has been increasing in the sintering process. Therefore, the impact of increased SiO2 content on the quality of sinter needs to be clarified. MethodsIn this study, we designed a rapid-heating furnace to simulate the actual thermal profile of the sintering process. The effects of basicity values, sintering temperature, and atmosphere, on the microstructure and phase formation of the Fe2O3-CaO-SiO2 ternary mixtures during sintering reactions, are investigated using X-ray diffractometry and scanning electron microscopy. The experimental results are analyzed using CALPHAD-type computational thermodynamics. Significant findingsWe found that solid-state reactions dominate at the lower temperature of 1250 °C, while liquid-assisted sintering occurs at the higher temperature (1300 °C). As the SiO2 content in the sinter increases, the content of the calcium-ferrite bonding phase decreases, while the content of Ca2SiO4 and Fe2O3 increases. Regarding the role of the atmosphere, more calcium ferrite bonding phases form under a lower oxygen partial pressure compared to an ambient atmosphere, which facilitates the densification of the Fe2O3-CaO-SiO2 sinter. In addition, a guideline for sintering operation with low-grade iron ore is proposed.