Previous studies have suggested that following experimental fluid percussion brain injury, increased prostaglandin (PG) synthesis, with its concomitant production of oxygen free radicals, causes functional and morphological abnormalities of the cerebral arterioles. The purpose of this study was to chemically determine if PGs are altered following this injury. To facilitate interpretation of neurochemical measurements the cats were ventilated, blood pressure was measured, and a cranial window, for microscopic observation of pial arteriolar diameter was inserted. PG levels were determined in quick-frozen cortical tissue removed from control and 3 groups of injured cats at 1.5, 8,0, and 60 min after injury. Analysis of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha was performed by HPLC and GC/MS. The control levels of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha were 216 +/- 44, 210 +/- 48, and 48 +/- 12 ng/g wet weight, respectively. Following injury, produced by a 22 ms increase in intracranial pressure, the pial arterioles dilated irreversibly and a transient hypertensive response occurred, thereby producing hyperemia. During the maximum hyperemic response, the total PGs were 75% of control. At 8 min after injury, when blood pressure returned to control level, the PGs were 158% of control and PGs fell to 111% of control at 60 min. These experiments supported our previous studies implicating increased PG synthesis in te genesis of the physiologic and morphologic sequelae of experimental concussive brain injury.
Read full abstract