The concept of synthetic aperture radar (SAR) has the advantage of being able to obtain high-quality images even when the target area is at night or covered with obstacles such as clouds or fog. These imaging capabilities have led to a rapid increase in demand for space SAR imagery across a variety of sectors, including government, military, and commercial sectors. The SAR-based deployable reflector antenna was developed in this series of paper. The satellite performance is influenced by the aperture size of an antenna. To improve the image acquisition performance, the SAR antenna has the configuration of several foldable CFRP reflectors. In this paper, the experimental investigation of the Structural-thermal model deployable reflector antenna is performed. During the launch condition, the satellite and payload are subjected to the dynamic load. In the STM phase, the acoustic test was conducted to evaluate the structural stability of the deployable reflector antenna within the acoustic environment. The sinusoidal vibration test was implemented to investigate the fundamental frequency for inplane/normal directions and evaluate the structural stability of reflector antenna. By using experimental data obtained from the thermal-balance test, the well-correlated thermal analysis model was established to execute the orbital thermal analysis. The experimental results of the environmental test in STM phase show that the deployable reflector antenna has structural stability for the structural/thermal environments. The configuration of the deployable reflector antenna determined in STM phase can be applied to the qualification model.
Read full abstract