Vehicular communication is revolutionizing transportation by enhancing passenger experience and improving safety through seamless message exchanges with nearby vehicles and roadside units (RSUs). To accommodate the growing number of vehicles in dense urban traffic with limited channel availability, non-orthogonal multiple access (NOMA) is a promising solution due to its ability to improve spectral efficiency by sharing channels among multiple users. However, to completely leverage NOMA on mobile vehicular networks, a chain of operations and resources must be optimized, including vehicle user (VU) and RSU association, channel assignment, and optimal power control. In contrast, traditional orthogonal multiple access (OMA) allocates separate channels to users, simplifying management but falling short in high-density environments. Additionally, enabling NOMA-OMA switching can further enhance the system performance while significantly increasing the complexity of the optimization task. In this study, we propose an optimized framework to jointly utilize the power domain NOMA in a vehicular network, where dynamic NOMA-OMA switching is enabled, by integrating the optimization of vehicle-to-RSU association, channel assignment, NOMA-OMA switching, and transmit power allocation into a single solution. To handle the complexity of these operations, we also propose simplified formulations that make the solution practical for real-time applications. The proposed framework reduces total power consumption by up to 27% compared to Util&LB/opt, improves fairness in user association by 18%, and operates efficiently with minimal computational overhead. These findings highlight the potential of the proposed framework to enhance communication performance in dynamic, densely populated urban environments.
Read full abstract