High-sensitivity, temperature-controlled DSC measurements at a low heating rate and creation of differential DSC traces scaled with respect to the reference material (completely dehydrated starch or completely dehydrated fiber, or their respective blends) permitted investigation of the influence of fiber on phase transformations in the wheat-starch-water system in the course of thermal gelatinization. Thermal effects associated with water interactions over the temperature range from 283 to 384 K under atmospheric pressure were determined. These thermal effects and previous structural studies permit us to make the following observations: (1) The main endothermic transition associated with melting of the crystalline part of the starch granule followed by a helix-coil transition in amylopectin occurs over the temperature range 319-333 K independent of the water and fiber contents. Adding fiber causes that transition to disappear both in the native blends and in water suspensions at low water contents. After adding more water and heating, recrystallization is observed and the transition reappears. (2) The fiber content has practically no influence on the slow exothermic transformation, which follows melting and helix-coil transition in amylopectin, proving that the slow transformation has a specific chemical character. In this reaction, the free ends of the unwound helices of amylopectin reassociate with parts of amylopectin molecules other than their original helix duplex partner, forming physical junctions and creating more general amorphous hydrogen bonded associations. (3) The high-temperature transition and small, but reproducible, distortions on the peaks of the main endothermic transition for water contents near 70-80 wt % are associated with smectic and nematic transitions, respectively. These are significantly influenced by the fiber content; higher fiber content causes an almost complete disappearance of these transitions. (4) The slow exothermic effect appearing almost from the very beginning of the heating in the starch-water system, associated with softening and uptake of water in the amorphous growth rings of the starch granule, is significantly hindered by added fiber.
Read full abstract