Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of strigolactones (SLs) in alleviating cadmium (Cd) phytotoxicity in Artemisia annua plants were investigated during this study. Strigolactones play a vital role during plant growth and development due to their complex interplay during a plethora of biochemical processes. However, information on the potential of SLs to elicit abiotic stress signaling and trigger physiological modifications in plants is limited. In order to decipher the same, A. annua plants were exposed to different concentrations of Cd (20 and 40 mg kg-1), with or without the supplementation of exogenous SL (GR24, a SL analogue) at 4 µM concentration. Under Cd stress, excess Cd accumulation resulted in reduced growth, physio-biochemical traits, and artemisinin content. However, the follow-up treatment of GR24 maintained a steady state equilibrium between reactive oxygen species and antioxidant enzymes, improved chlorophyll fluorescence parameters such as Fv/Fm, ФPSII, and ETR for improved photosynthesis, enhanced chlorophyll content, maintained chloroplast ultrastructure, improved the glandular trichome (GT) attributes and artemisinin production in A. annua. Moreover, it also resulted in improved membrane stability, reduced Cd accumulation, and regulated the behaviour of stomatal apertures for better stomatal conductance under Cd stress. The results of our study suggest that GR24 could be highly effective in alleviating Cd-induced damages in A. annua. It acts via the modulation of the antioxidant enzyme system for redox homeostasis, protection of the chloroplasts and pigments for improved photosynthetic performance, and improved GT attributes for enhanced artemisinin production in A. annua.
Read full abstract