Ethidium bromide (EtBr) and SYBR Green I are nucleic acid gel stains and used commonly in combination with UV-illumination. EtBr preferentially induces frameshift mutations but only in the presence of an exogenous metabolic activation system, while SYBR Green I is a very weak mutagen that induces frameshift mutations. We found that EtBr and SYBR Green I, without an added metabolic activation system, strongly potentiated the base-substitution mutations induced by UV-irradiation in E. coli B/r WP2 cells. Each DNA stain alone showed no mutagenicity to the strain. Base-substitutions induced by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5 H)-furanone (MX) and 4-nitroquinoline-1-oxide were similarly potentiated by EtBr and SYBR Green I. SYBR Green I had a much greater effect. No enhancing effects were observed on mutations induced by mitomycin C, cisplatin, transplatin, cumene hydroperoxide, base analogs, and alkylating agents. Another DNA stain, acridine orange, showed similar enhancing effects on UV- and MX-mutagenicity, but no effect was observed for 4′,6-diamidino-2-phenylindole (DAPI). UV- and MX-induced mutations in E. coli WP2s ( uvrA), which is defective in nucleotide excision repair activity, were not potentiated by the addition of EtBr, SYBR Green I, or acridine orange. Those nucleic acid stains might inhibit the nucleotide excision repair of DNA damaged by UV and MX treatment.
Read full abstract