Industries, such as manufacturing, are accelerating their embrace of the metaverse to achieve higher productivity, especially in complex industrial scheduling. In view of the growing parking challenges in large cities, high-density vehicle spatial scheduling is one of the potential solutions. Stack-based parking lots utilize parking robots to densely park vehicles in the vertical stacks like container stacking, which greatly reduces the aisle area in the parking lot, but requires complex scheduling algorithms to park and take out the vehicles. The existing high-density parking (HDP) scheduling algorithms are mainly heuristic methods, which only contain simple logic and are difficult to utilize information effectively. We propose a hybrid residual multiexpert (HIRE) reinforcement learning (RL) approach, a method for interactive learning in the digital industrial metaverse, which efficiently solves the HDP batch space scheduling problem. In our proposed framework, each heuristic scheduling method is considered as an expert. The neural network trained by RL assigns the expert strategy according to the current parking lot state. Furthermore, to avoid being limited by heuristic expert performance, the proposed hierarchical network framework also sets up a residual output channel. Experiments show that our proposed algorithm outperforms various advanced heuristic methods and the end-to-end RL method in the number of vehicle maneuvers, and has good robustness to the parking lot size and the estimation accuracy of vehicle exit time. We believe that the proposed HIRE RL method can be effectively and conveniently applied to practical application scenarios, which can be regarded as a key step for RL to enter the practical application stage of the industrial metaverse.