Abstract In this article, we consider a discrete nonlinear third-order boundary value problem Δ 3 u ( k − 1 ) = λ a ( k ) f ( k , u ( k ) ) , k ∈ [ 1 , N − 2 ] Z , Δ 2 u ( η ) = α Δ u ( N − 1 ) , Δ u ( 0 ) = − β u ( 0 ) , u ( N ) = 0 , \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{\Delta }^{3}u\left(k-1)=\lambda a\left(k)f\left(k,u\left(k)),\hspace{1em}k\in {\left[1,N-2]}_{{\mathbb{Z}}},\hspace{1.0em}\\ {\Delta }^{2}u\left(\eta )=\alpha \Delta u\left(N-1),\Delta u\left(0)=-\beta u\left(0),\hspace{1em}u\left(N)=0,\hspace{1.0em}\end{array}\right. where N > 4 N\gt 4 is an integer, λ > 0 \lambda \gt 0 is a parameter. f : [ 1 , N − 2 ] Z × [ 0 , + ∞ ) → [ 0 , + ∞ ) f:{\left[1,N-2]}_{{\mathbb{Z}}}\times \left[0,+\infty )\to \left[0,+\infty ) is continuous, a : [ 1 , N − 2 ] Z → ( 0 , + ∞ ) a:{\left[1,N-2]}_{{\mathbb{Z}}}\to \left(0,+\infty ) , α ∈ 0 , 1 N − 1 \alpha \in \left[0,\frac{1}{N-1}\right) , β ∈ 0 , 2 ( 1 − α ( N − 1 ) ) N ( 2 − α ( N − 1 ) ) \beta \in \left[0,\frac{2\left(1-\alpha \left(N-1))}{N\left(2-\alpha \left(N-1))}\right) , and η ∈ N − 2 2 + 1 , N − 2 Z \eta \in {\left[\left[\frac{N-2}{2}\right]+1,N-2\right]}_{{\mathbb{Z}}} . With the sign-changing Green’s function, we obtain not only the existence of positive solutions but also the multiplicity of positive solutions to this problem.
Read full abstract