In this paper, we consider the quasilinear elliptic equation with singularity and critical exponents \t\t\t{−Δpu−μ|u|p−2u|x|p=Q(x)|u|p∗(t)−2u|x|t+λu−s,in Ω,u>0,in Ω,u=0,on ∂Ω,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} -\\Delta_{p}u-\\mu \\frac{ \\vert u \\vert ^{p-2}u}{ \\vert x \\vert ^{p}}=Q(x) \\frac{ \\vert u \\vert ^{p^{*}(t)-2}u}{ \\vert x \\vert ^{t}}+\\lambda u^{-s}, &\\text{in }\\Omega , \\\\ u>0, & \\text{in }\\Omega , \\\\ u=0, &\\text{on }\\partial \\Omega , \\end{cases} $$\\end{document} where Delta_{p}= operatorname {div}(|nabla u|^{p-2}nabla u) is a p-Laplace operator with 1< p< N. p^{*}(t):=frac{p(N-t)}{N-p} is a critical Sobolev–Hardy exponent. We deal with the existence of multiple solutions for the above problem by means of variational and perturbation methods.
Read full abstract