Gompertz distribution is a significant and commonly used lifetime distribution, which plays an important role in reliability engineering. In this paper, we study the statistical inference of Gompertz distribution based on adaptive Type-II hybrid progressive censored schemes. From the perspective of frequentist, we derive the point estimations through the method of maximum likelihood estimation (MLE) and the existence of MLE is proved. Besides MLE, we propose the stochastic EM algorithm to reduce complexity and simplify computing. We also apply the method of Bootstraps (Bootstrap-p and Bootstrap-t) to construct confidence intervals. From Bayesian aspect, the Bayes estimates of the unknown parameters are evaluated by applying the MCMC method, the average length and coverage rate of credible intervals are also carried out. The Bayes inference is based on the squared error loss function and LINEX loss function. Furthermore, a numerical simulation is conducted to assess the performance of the proposed methods. Finally, a real-life example is considered to illustrate the application and development of the inference methods. In summary, the Bayesian method seems to perform the best among all approaches, while other approaches also present different advantages.
Read full abstract