Given an exterior domainΩ\OmegawithC2,αC^{2,\alpha }boundary inRn\mathbb {R}^{n},n≥3n\geq 3, we obtain a11-parameter familyuγ∈C∞(Ω)u_{\gamma }\in C^{\infty }\left ( \Omega \right ),|γ|≤π/2\left \vert \gamma \right \vert \leq \pi /2, of solutions of the minimal surface equation such that, if|γ|>π/2\left \vert \gamma \right \vert >\pi /2,uγ∈C∞(Ω)∩C2,α(Ω¯)u_{\gamma }\in C^{\infty }\left ( \Omega \right ) \cap C^{2,\alpha }\left ( \overline {\Omega }\right ),uγ|∂Ω=0u_{\gamma }|_{\partial \Omega }=0withmax∂Ω‖∇uγ‖=tanγ\max _{\partial \Omega }\left \Vert \nabla u_{\gamma }\right \Vert =\tan \gammaand, if|γ|=π/2\left \vert \gamma \right \vert =\pi /2, the graph ofuγu_{\gamma }is contained in aC1,1C^{1,1}manifoldMγ⊂Ω¯×RM_{\gamma }\subset \overline {\Omega }\times \mathbb {R}with∂Mγ=∂Ω\partial M_{\gamma }=\partial \Omega. Each of these functions is bounded and asymptotic to a constant\[cγ=lim‖x‖→∞uγ(x).c_{\gamma }=\lim _{\left \Vert x\right \Vert \rightarrow \infty }u_{\gamma }\left ( x\right ) .\]The mappingsγ→uγ(x)\gamma \rightarrow u_{\gamma }\left ( x\right )(for fixedx∈Ωx\in \Omega) andγ→cγ\gamma \rightarrow c_{\gamma }are strictly increasing and bounded. The graphs of these functions foliate the open subset ofRn+1\mathbb {R}^{n+1}\[{(x,z)∈Ω×R, −uπ/2(x)>z>uπ/2(x)}.\left \{ \left ( x,z\right ) \in \Omega \times \mathbb {R}\text {, }-u_{\pi /2}\left ( x\right ) >z>u_{\pi /2}\left ( x\right ) \right \} .\]Moreover, ifRn∖Ω\mathbb {R}^{n}\backslash \Omegasatisfies the interior sphere condition of maximal radiusρ\rhoand if∂Ω\partial \Omegais contained in a ball of minimal radiusϱ\varrho, then\[[0,σnρ]⊂[0,cπ/2]⊂[0,σnϱ],\left [ 0,\sigma _{n}\rho \right ] \subset \left [ 0,c_{\pi /2}\right ] \subset \left [ 0,\sigma _{n}\varrho \right ] ,\]where\[σn=∫1∞dtt2(n−1)−1.\sigma _{n}=\int _{1}^{\infty }\frac {dt}{\sqrt {t^{2\left ( n-1\right ) }-1}}.\]One of the above inclusions is an equality if and only ifρ=ϱ\rho =\varrho,Ω\Omegais the exterior of a ball of radiusρ\rhoand the solutions are radial.These foliations were studied by E. Kuwert in [Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), pp. 445–451] and our result answers a natural question about the existence of such foliations which was not touched by Kuwert.