A numerical investigation is conducted to uncover the parametric influence of configuration geometry on the thrust performance of annular expansion deflection (ED) nozzles. Based on the classic design principle of Taylor’s ED nozzle configuration, the influences of six geometric elements, covering the expansion channel region, the near-pintle region, and the shroud region, including 13 nozzle configurations, are examined in detail. The flow characteristics in each nozzle are demonstrated, according to which the connections between the geometric changes and nozzle thrust performance are elucidated. The present results show that the nozzle flow pattern is closely related to the nozzle configuration geometry. In the open operation mode of the ED nozzle, the wide expansion channel has very little restriction on the axial expansion of the exhaust gas. The high axial velocity brings strong shock strength and total pressure loss, which are unfavorable to the nozzle thrust performance. The large curvature of the shroud expansion section contributes greatly to the exhaust gas deflection, which increases the mass flow rate of the supersonic core flow zone through the nozzle exit plane, and therefore favors the thrust performance. In the closed operation mode, geometric differences in the expansion channel region have little effect on the supersonic gas, which fills almost the entire nozzle. The shroud region still affects the axial deflection of the gas and its large curvature is associated with superior thrust performance. These investigations suggest that the annular ED nozzles with narrow expansion channels and large shroud curvatures are superior in thrust performance.
Read full abstract