To probe the presence of mirror neurons in the human brain, cross-modal fMRI adaptation has been suggested as a suitable technique. The rationale behind this suggestion is that this technique allows making more accurate inferences about neural response properties underlying fMRI voxel activations, beyond merely showing shared voxels that are active during both action observation and execution. However, the validity of using cross-modal fMRI adaptation to demonstrate the presence of mirror neurons in parietal and premotor brain regions has been questioned given the inconsistent and weak results obtained in human studies. A better understanding of cross-modal fMRI adaptation effects in the macaque brain is required as the rationale for using this approach is based on several assumptions related to macaque mirror neuron response properties that still need validation. Here, we conducted a cross-modal fMRI adaptation study in macaque monkeys, using the same action execution and action observation tasks that successfully yielded mirror neuron region cross-modal action decoding in a previous monkey MVPA study. We scanned two male rhesus monkeys while they first executed a sequence of either reach-and-grasp or reach-and-touch hand actions and then observed a video of a human actor performing these motor acts. Both whole-brain and region-of-interest analyses failed to demonstrate cross-modal fMRI adaptation effects in parietal and premotor mirror neuron regions. Our results, in line with previous findings in non-human primates, show that cross-modal motor-to-visual fMRI adaptation is not easily detected in monkey brain regions known to house mirror neurons. Thus, our results advocate caution in using cross-modal fMRI adaptation as a method to infer whether mirror neurons can be found in the primate brain.