We discuss theoretically a novel approach to tailoring the properties of a new family of organic-inorganic hybrid superlattices, using two isostructural materials, ZnSe(en)0.5 and ZnTe(en)0.5, as examples. Replacing Se with Te leads to a number of nontrivial changes: the conduction band parity, singularity type, conductivity in the superlattice direction, and the p-type dopability. Experimentally, we report the first unambiguous observation of exciton-polariton emission in a hybrid semiconductor, i.e., ZnTe(en)0.5 . The band-edge excitonic transitions in both emission and absorption are explained by the calculated electronic structures.