In twisted bilayer (t2L) two-dimensional (2D) transition metal dichalcogenides, local strain at wrinkles strongly modulates the local exciton density and PL energy resulting in an exciton funneling effect. Probing such exciton behaviors especially at nanometer length scales is beyond the limit of conventional analytical tools due to the limited spatial resolution and low sensitivity. To address this challenge, herein we applied high-resolution tip-enhanced photoluminescence (TEPL) microscopy to investigate exciton funneling at a wrinkle in a t2L MoS2 sample with a small twist angle of 0.5°. Owing to a spatial resolution of <10 nm, excitonic behavior at nanoscale sized wrinkles could be visualized using TEPL imaging. Detailed investigation of nanoscale exciton funneling at the wrinkles revealed a deformation potential of -54 meV/%. The obtained results provide novel insights into the inhomogeneities of excitonic behaviors at nanoscale and would be helpful in facilitating the rational design of 2D material-based twistronic devices.
Read full abstract