Efficient detection of related markers is significant for the early screening of COVID-19. Near infrared (NIR) light excited up-conversion fluorescence probes are ideal for biosensing but limited by the low luminescence efficiency. In this work, a novel highly stable opal photonic crystal (OPC) structure was designed to provide an OPC effect for up-conversion fluorescence enhancement, and sensitive Novel Coronavirus IgG up-conversion FRET-based sensor was further constructed. For the problems of water stability and mechanical stability of polymer OPC which cannot be solved for a long time, polymer spray combined with a flipped OPC film strategy is presented. Fragmented size OPC film was firmly fixed by polymer modification layer, which gave large size OPC film great water stability, mechanical stability and bending performance without affecting the fluorescence enhancement property. On this basis, the up-conversion emission intensity was enhanced significantly, and fluorescence resonant energy transfer (FRET) based Novel Coronavirus IgG antibody sensor was constructed. Monolayer up-conversion nanoparticles (UCNPs) on the surface of the polydopamine (PDA)/OPC film can make the fluorescent signal more sensitive, and effectively reduce the detection limit. The test device integrating NIR excitation and mobile phone realized the visual fast detection, showing remarkable sensing performance for COVID-19 antibodies with the limit of detection (LOD) of 0.1 ng mL−1. This detection platform will provide a more effective tool for early detection of the novel coronavirus.