Surface plasmon polaritons are electromagnetic surface waves, which, due to their nanoscale nature, are efficiently used for modifying an output of optical field through a metallic nanoslit, e.g., extraordinary optical transmission and beaming of light. Herein, the phenomenon of optical beaming by employing a regular array of semicylinder-shaped grooves around a nanoslit has been investigated based on numerical simulations. By analyzing the behavior of Poynting vectors in near surroundings of the slit, we have successfully demonstrated that grooves which are embedded on the layer at the exit side of the slit produce enhanced directionality of the output light than the unembedded ones. In case of semicylinder-shaped grooves, the calculated intensity of the output beam was 1.5-times, at near and far distances, higher than that of the grating grooves. Our analysis shows that positioning of the groove right at the exit of the slit is crucial for the enhancement of the beaming effect. This is due to the conversion of surface plasmon polaritons into a freely propagating field and the possible excitation of localized surface plasmons because of the presence of nanogroove. Furthermore, the proposed geometries are made of Aluminum, which is a plasmonic material and commonly applied for the fabrication of optical nanostructures. Manipulating of light (beaming, focusing/guiding, and splitting) by nanoslit can be beneficial to several applications such as nano-resolution optical imaging, sensors, and plasmonic circuits.
Read full abstract