Recent experimental work on zebrafish has shown the in vivo activity of photoreceptors and horizontal cells (HCs) as a function of the stimulus spectrum, highlighting the appearance of chromatic-opponent signals at their first synaptic connection. Altogether with the observed lack of excitatory intercone connections, these findings suggest that the mechanism yielding early color opponency in zebrafish is dominated by inhibitory feedback. We propose a neuronal population model based on zebrafish retinal circuitry to investigate whether networks with predominantly inhibitory feedback are more advantageous in encoding chromatic information than networks with mixed excitatory and inhibitory mechanisms. We show that networks with dominant inhibitory feedback exhibit a unique and reliable encoding of chromatic information. In contrast, this property is not guaranteed in networks with strong excitatory intercone connections, exhibiting bistability. These findings provide a theoretical explanation for the absence of excitatory intercone couplings in zebrafish color circuits. In addition, our study shows that these networks, with only one type of horizontal cell, are suitable to encode most of the variance from the zebrafish environment. However, at least two successive layers of inhibitory neurons are needed to reach the optimum. Finally, we contrast the encoding performance of networks with different opsin sensitivities, showing an improvement of only 13% compared with zebrafish, suggesting that the zebrafish retina is adapted to encode color information from its habitat efficiently.
Read full abstract