This work examines endoreversible combined cycle based on finite time thermodynamic concepts. In this study, the proposed system is cascade combined cycle have three heat sources. Effects of irreversibility due to the heat transfer at the system boundaries are considered. The study is based on Stephen Boltzmann's heat transfer laws. Based on finite size, this research analyzes the system based on first and second law thermodynamics. Dimensionless power, efficiency, and entropy generation are calculated based on the dimensionless variables. Dimensionless variables are primary and secondary temperature ratios, common temperature ratio, and the ratio of thermal conductance of each heat exchanger. The effects of dimensionless variables on thermodynamic criteria are examined. Also, optimization is performed base on different criteria such as dimensionless power, energy efficiency and entropy generation by genetic algorithm. The optimization results show that the maximum dimensionless power, the maximum energy efficiency and minimum entropy generation are 0.035092393, 61.09% and 8.132 E-07, respectively. The results of this study are very close to the actual results. New thermodynamic criteria bring systems closer to better conditions. Furthermore, the heat transfer mechanism and heat transfer law greatly affect performance and thermodynamic criteria another. These results are used in the design of radiant heat exchangers.