We identify a symmetry induced mechanism which dominates the long time behaviour in symmetric triangular billiards. We rigorously prove the existence of invariant sets in symmetric irrational billiards on which the dynamics is governed by an interval exchange transformation. Counterintuitively, this property of symmetric irrational billiards is analogous to the case of general rational billiards, and it highlights the non-trivial impact of symmetries in non-hyperbolic dynamical systems. Our findings provide an explanation for the logarithmic subdiffusive relaxation processes observed in certain triangular billiards. In addition we are able to settle a long standing conjecture about the existence of non-periodic and not everywhere dense trajectories in triangular billiards.
Read full abstract