Small molecules formed during lipid peroxidation can react with the basic groups in proteins through different mechanisms. Recently, substituted pyridinium moieties were observed during in vitro incubations of lysine-containing peptides with 2-alkenals. To explore the dissociation behavior of peptides with pyridinium-derivatized lysine residues, the peptide ions created through either matrix-assisted laser desorption/ionization or electrospray ionization were studied with tandem mass spectrometry. The permanently charged pyridinium ions fragment primarily through the charge-remote processes. Under high energy collision-induced dissociation, a number of diagnostic ions were observed that could potentially be used to identify modified residues in proteins. The origins of these ions were studied using deuterium exchange and higher-order mass spectrometry experiments using an ion trap instrument. Rational structures for these ions are proposed.
Read full abstract