AbstractThe helical concept of the fine structure of cellulose as proposed by Manley is discussed. The deuterium exchange experiments with cotton, cotton crystallites, and regenerated cellulose I, in which accessibility was determined by comparing the ratio of the infrared absorbance of the OD peak to the OH peak, revealed that the accessibility of cotton linters decreased on acid hydrolysis, whereas it increased on treatment with ethylamine followed by washing with water. This is in contrast to the finding of Manley, who had evaluated the accessibility by a gravimetric D2O exchange method and had come to the conclusion that acid hydrolysis did not change the accessibility of cellulose and hence cellulose did not contain crystalline and amorphous phases but was all crystalline. On the basis of Manley's protofibril and the accessibility data obtained in this investigation, a concept of the fine structure of cellulose is proposed, in which the role of Manley's protofibril is analogous to the role of individual molecule in the fringe micellar model. This concept explains the properties of cellulose that are otherwise explainable on the currently accepted fringe micellar theory. In addition, it explains the marked shrinkage in the length of cotton and rayon fibers when placed in 16% sodium hydroxide solution.