An integrated chromatographic process comprising ion exchange (IEC) and hydrophobic interaction chromatography (HIC) for isolating a target protein form multicomponent mixtures has been analyzed. The model mixture contained immunoglobulin G that was the key product of the separation process, cytochrome C and ovalbumin. The adsorption characteristics and the mass transport kinetics of the model proteins have been determined along with their dependencies on the operating variables such as pH, temperature and the salt concentration for IEC as well as HIC media. Limitations of the process efficiency resulting from kinetic effects, solubility constraints and the necessity of the mobile phase exchange between chromatographic steps have been discussed. To improve the performance of the integrated process the multiple-injection technique has been suggested. This technique consisted in loading feed mixtures dissolved in a good solvent onto the column by several small-volume injections under conditions of strong protein adsorption. It allowed diminishing interactions between the sample-solvent and protein and elimination of undesired effects such as band splitting and band broadening. For the process design and optimization a dynamic model has been used accounting for thermodynamics and kinetics of the process. The optimization results indicated superiority of the multiple-injection technique over standard isocratic injections in terms of the process yield and productivity.