Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (ob/ob), and leptin-VLDLR double-null (ob/ob-VLDLR-/-) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of ob/ob mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in ob/ob mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.NEW & NOTEWORTHY Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.
Read full abstract