The large-strain geometric assumptions and nonlinear compressibility and permeability have significant effects on the consolidation of soft soils with high compressibility. However, analytical solutions for large-strain nonlinear consolidation of soft soils with partially penetrating PVDs have been rarely reported in the literature. A double logarithmic model is adopted to describe the nonlinear compressibility and permeability of soft soils with high compressibility, and a large-strain consolidation model for soft soils with partially penetrating PVDs under the condition that the excess pore water pressure at the interface between the improved and unimproved layers is equal is established based on Gibson’s large-strain consolidation theory. The analytical solution for the large-strain nonlinear consolidation model for soft soils with partially penetrating PVDs is obtained. The reliability of the analytical solution obtained in this study is verified by comparing it with the existing solutions under different conditions, and the maximum deviation between the two methods does not exceed 5 %. On this basis, consolidation behaviors of soft soils with partially penetrating PVDs under different conditions were analyzed by extensive calculations. Finally, the proposed analytical solution for the large strain consolidation model is applied to the settlement calculation of the Bachiem Highway Project, which further demonstrates the applicability of the consolidation model.