We study theories with the exceptional gauge group G(2). The 14 adjoint “gluons” of a G(2) gauge theory transform as {3}, { 3 ̄ } and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a “quark” in the {7} representation of G(2) can be screened by “gluons”. As a result, in G(2) Yang–Mills theory the string between a pair of static “quarks” can break. In G(2) QCD there is a hybrid consisting of one “quark” and three “gluons”. In supersymmetric G(2) Yang–Mills theory with a {14} Majorana “gluino” the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined–confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature.
Read full abstract