An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.
Read full abstract