This research focuses on the electrochemical properties of the spinel structure, which is a specific structure of Co-Mn bimetal, and the active species therein, rather than the hydrogen evolution (HER) performance of Co-Mn-based bimetal oxides. The catalysts of four types are prepared by following a solvothermal process and coated on a NiOOH/NF support electrode (NNF). Compared to the CoO and Mn2O3 single particle-assembled electrodes, the CoMn2O4/NNF electrode coated with the flower shaped CoMn2O4 bimetallic particle displays the higher stability in HER. The double-layer capacitance of the CoMn2O4/NNF electrode (25.6 mF cm−2) is approximately three or four times higher than those of the CoO/NNF and Mn2O3/NNF electrodes, meaning that the CoMn2O4/NNF electrode has a larger electrochemical active surface area. The CoMn2O4/NNF electrode additionally has a low overpotential (132 mV), implying that it's HER activity is superior to the other electrocatalysts. It is demonstrated that the structural characteristic of CoMn2O4 contributes to the excellent stability in a long-term HER test. The Density-functional theory (DFT) calculations reveal that the Volmer step is promoted on the (101) crystal plane of CoMn2O4; i.e., the rate of H* formation increases, which causes the HER kinetics to be enhanced. Thus, the experimental and theoretical findings in this study prove the excellent HER performance of CoMn2O4 particles.
Read full abstract