BackgroundGrowth is the holy grail of tissue implants in pediatrics. No vascular graft currently in use for surgical repairs of congenital heart defects has somatic growth capacity.MethodsBiologically-engineered grafts (6 mm) grown from donor ovine fibroblasts in a sacrificial fibrin gel were implanted into the left pulmonary branch of 3-month old lambs for 3, 6, and 18 months. A control group of Propaten® PTFE grafts was implanted for 6 months.ResultsThe engineered grafts exhibit extensive site-appropriate recellularization after only 3 months and near-normal increase of diameter from the preimplant value of 6 mm to 12.9 mm and also a doubling of length from 6.0 mm to 13.0 mm at 6 months (n = 3) associated with apparent somatic graft growth (collagen content increase of 265% over 18-month, n = 2), along with excellent hemodynamics and no calcification, in contrast to the Propaten® grafts. The left-right flow distribution is nearly 50–50 for the engineered grafts at 6 months (n = 3) compared to about 20–80 for the Propaten® grafts (n = 3), which have less than one-half the diameter, a 6-fold higher pressure gradient, and stunted vascular development downstream of the graft. The engineered grafts exhibit a stable diameter over months 12–18 when the lambs become adult sheep (n = 2).ConclusionsThis study supports the use of these regenerative grafts with somatic growth capacity for clinical trial in patients born with a unilateral absent pulmonary artery branch, and it shows their potential for improving development of the downstream pulmonary vasculature.