This paper is to indicate a class of new exact solutions of the equations governing the two-dimensional steady motion of incompressible fluid of variable viscosity in the presence of body force. The class consists of the stream function $\psi$ characterized by equation $\theta=f(r)+ a \psi + b $ in polar coordinates $r$, $\theta$ , where a continuously differentiable function is $f(r)$ and $a\neq 0 , b $ are constants. The exact solutions are determined for given one component of the body force, for both the cases when $f(r)$ is arbitrary and when it is not. When $f(r)$ is arbitrary, we find $a=1$ and we can construct an infinite set of streamlines and the velocity components, viscosity function, generalized energy function and temperature distribution for the cases when $R_{e}P_{r}=1$ and when $R_{e}P_{r}\neq 1$ where $R_{e}$ represents Reynolds number and $P_{r}$Prandtl number. For the case when $f(r)$ is not arbitrary we can find solutions for the cases $R_{e}P_{r}\neq a$ and $R_{e}P_{r}=a$ where $"a"$ remains arbitrary.Â
Read full abstract