This study addresses the sustainable medical waste location and transportation (SMWLT) problem from the viewpoint of social risk, environmental impact, and economic performance, where model uncertainty includes risk and transportation costs. In practice, it is usually hard to obtain the exact probability distribution of uncertain parameters. To address this challenge, this study first constructs an ambiguity set to model the partial distribution information of uncertain parameters. Based on the constructed ambiguity set, this study develops a new multi-objective distributionally robust chance-constrained (DRCC) model for the SMWLT problem. Subsequently, this study adopts the robust counterpart (RC) approximation method to reformulate the proposed DRCC model as a computationally tractable mixed-integer linear programming (MILP) model. Furthermore, an accelerated Benders decomposition (BD) enhanced by valid inequalities is designed to solve the resulting MILP model, which significantly improves the solution efficiency compared with the classical BD algorithm and CPLEX solver. Finally, a practical case in Chongqing, China, is addressed to illustrate the effectiveness of our DRCC model and the accelerated BD solution method.
Read full abstract