Abstract

When solving the problem of the minimum cost consensus with asymmetric adjustment costs, decision makers need to face various uncertain situations (such as individual opinions and unit adjustment costs for opinion modifications in the up and down directions). However, in the existing methods for dealing with this problem, robust optimization will lead to overly conservative results, and stochastic programming needs to know the exact probability distribution. In order to overcome these shortcomings, it is essential to develop a novelty consensus model. Thus, we propose three new minimum-cost consensus models with a distributionally robust method. Uncertain parameters (individual opinions, unit adjustment costs for opinion modifications in the up and down directions, the degree of tolerance, and the range of thresholds) were investigated by modeling the three new models, respectively. In the distributionally robust method, the construction of an ambiguous set is very important. Based on the historical data information, we chose the Wasserstein ambiguous set with the Wasserstein distance in this study. Then, three new models were transformed into a second-order cone programming problem to simplify the calculations. Further, a case from the EU Trade and Animal Welfare (TAW) program policy consultation was used to verify the practicability of the proposed models. Through comparison and sensitivity analysis, the numerical results showed that the three new models fit the complex decision environment better.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.