In this paper, we prove the spectral instability of general symmetric shear flows of the incompressible Navier–Stokes equations at a high Reynolds number in a two-dimensional channel. This includes shear flows that are spectrally stable to the corresponding Euler equations, and thus for the first time, provides a complete mathematical proof of the viscous destabilization phenomenon, pointed out by Heisenberg (1924) [5], C.C. Lin (1944) [9] and Tollmien (1947) [17], among others. Precisely, we construct exact unstable eigenvalues and eigenfunctions of the linearized Navier–Stokes equations around symmetric shear flows, showing that the solution could grow slowly at the rate of et/αR, where R is the sufficiently large Reynolds number and α is the small spatial frequency that remains between lower and upper marginal stability curves: αlow(R)≈R−1/7 and αup(R)≈R−1/11. We introduce a new, operator-based approach, which avoids to deal with matching inner and outer asymptotic expansions, but instead involves a careful study of singularity in the critical layers by deriving pointwise bounds on the Green function of the corresponding Rayleigh and Airy operators.
Read full abstract