We investigate the use of machine learning for solving analytic problems in theoretical physics. In particular, symbolic regression (SR) is making rapid progress in recent years as a tool to fit data using functions whose overall form is not known in advance. Assuming that we have a mathematical problem that is posed analytically, e.g. through equations, but allows easy numerical evaluation of the solution for any given set of input variable values, one can generate data numerically and then use SR to identify the closed-form function that describes the data, assuming that such a function exists. In addition to providing a concise way to represent the solution of the problem, such an obtained function can play a key role in providing insight and allow us to find an intuitive explanation for the studied phenomenon. We use a state-of-the-art SR package to demonstrate how an exact solution can be found and make an attempt at solving an unsolved physics problem. We use the Landau-Zener problem and a few of its generalizations as examples to motivate our approach and illustrate how the calculations become increasingly complicated with increasing problem difficulty. Our results highlight the capabilities and limitations of the presently available SR packages, and they point to possible modifications of these packages to make them better suited for the purpose of finding exact solutions as opposed to good approximations. Our results also demonstrate the potential for machine learning to tackle analytically posed problems in theoretical physics.
Read full abstract