Protein-protein interactions (PPIs) play a vital role in cellular functions and are essential for therapeutic development and understanding diseases. However, current predictive tools often struggle to balance efficiency and precision in predicting the effects of mutations on these complex interactions. To address this, we present DDMut-PPI, a deep learning model that efficiently and accurately predicts changes in PPI binding free energy upon single and multiple point mutations. Building on the robust Siamese network architecture with graph-based signatures from our prior work, DDMut, the DDMut-PPI model was enhanced with a graph convolutional network operated on the protein interaction interface. We used residue-specific embeddings from ProtT5 protein language model as node features, and a variety of molecular interactions as edge features. By integrating evolutionary context with spatial information, this framework enables DDMut-PPI to achieve a robust Pearson correlation of up to 0.75 (root mean squared error: 1.33 kcal/mol) in our evaluations, outperforming most existing methods. Importantly, the model demonstrated consistent performance across mutations that increase or decrease binding affinity. DDMut-PPI offers a significant advancement in the field and will serve as a valuable tool for researchers probing the complexities of protein interactions. DDMut-PPI is freely available as a web server and an application programming interface at https://biosig.lab.uq.edu.au/ddmut_ppi.
Read full abstract