In UAV path-planning research, it is often difficult to achieve optimal performance for conflicting objectives. Therefore, the more promising approach is to find a balanced solution that mitigates the effects of subjective weighting, utilizing a multi-objective optimization algorithm to address the complex planning issues that involve multiple machines. Here, we introduce an advanced mathematical model for cooperative path planning among multiple UAVs in urban logistics scenarios, employing the non-dominated sorting black-winged kite algorithm (NSBKA) to address this multi-objective optimization challenge. To evaluate the efficacy of NSBKA, it was benchmarked against other algorithms using the Zitzler, Deb, and Thiele (ZDT) test problems, Deb, Thiele, Laumanns, and Zitzler (DTLZ) test problems, and test functions from the conference on evolutionary computation 2009 (CEC2009) for three types of multi-objective problems. Comparative analyses and statistical results indicate that the proposed algorithm outperforms on all 22 test functions. To verify the capability of NSBKA in addressing the multi-UAV cooperative problem model, the algorithm is applied to solve the problem. Simulation experiments for three UAVs and five UAVs show that the proposed algorithm can obtain a more reasonable collaborative path solution set for UAVs. Moreover, path planning based on NSBKA is generally superior to other algorithms in terms of energy saving, safety, and computing efficiency during planning. This affirms the effectiveness of the meta-heuristic algorithm in dealing with multiple objective multi-UAV cooperation problems and further enhances the robustness and competitiveness of NSBKA.
Read full abstract