Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data. We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions. We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 (d = 0.65 and d = 0.50, pFDR < 0.05) and S2 (d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 (T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 (T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span (T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons. Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.