High- to ultrahigh-pressure metamorphic assemblages consisting of garnet-omphacitic clinopyroxene bearing mafic rocks have been identified within the Paleoproterozoic Nyong Group in SW Cameroon, at the northwestern margin of the Archean Congo craton. These rocks were investigated in detail and for the first time evidence for eclogite facies metamorphism at ca 25 kbar and 850 °C is provided. A clockwise P-T path with nearly isothermal decompression (ITD) is deduced from mineral zoning and textural relationships characterized by mineral recrystallization and multi-layered coronitic overgrowths of plagioclase and clinopyroxene surrounding garnet porphyroblasts. These P-T conditions imply a burial depth greater than 90 km, at lower geothermal gradient of ca 10 °C/km. The geochemical signature of ten representative rock samples show that two groups of eclogite facies rocks genetically originate from mostly basaltic and basaltic andesite compositions, with a characteristic upper mantle-derived tholeiitic trend. Moreover, their chondrite and MORB normalized REE and trace element concentrations are characterized by nearly flat REE patterns with very little to no Eu anomaly, (La/Sm)N ≥ 1 and Zr/Nb ≤ 10, as well as a gradual depletion from LREE to HREE with also very little to no Eu anomaly, but (La/Sm)N < 1, Zr/Nb > 10 and negative anomalies in Th, K, Nb, Ta, Sr, Zr and Ti consistent with mid-ocean ridge basalt (MORB) contaminated by a subduction component or by a crustal component.Previous available geochronological data coupled with our new petrological, mineralogical and geochemical findings clearly indicate that the eclogite facies metabasites from the Eburnean Nyong Group between 2100 and 2000 Ma represent one of the oldest subducted oceanic slab or trace of a suture zone so far recorded within the West Central African Fold Belt (WCAFB). The geodynamic implications of these eclogites suggest a subduction-related process followed by a rapid exhumation of their protoliths, therefore, providing critical information corroborating that plate tectonic processes operated during the Paleoproterozoic.