The Keller–Segel–Navier–Stokes system nt+u·∇n=Δn-χ∇·(n∇c)+ρn-μn2,ct+u·∇c=Δc-c+n,ut+(u·∇)u=Δu+∇P+n∇ϕ+f(x,t),∇·u=0,(⋆)\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{rcll} n_t + u\\cdot \\nabla n &{}=&{} \\Delta n - \\chi \\nabla \\cdot (n\\nabla c) + \\rho n-\\mu n^2,\\\\ c_t + u\\cdot \\nabla c &{}=&{} \\Delta c-c+n, \\\\ u_t + (u\\cdot \\nabla )u &{}=&{} \\Delta u + \\nabla P + n \\nabla \\phi + f(x,t), \\qquad \\nabla \\cdot u=0, \\end{array} \\right. \\qquad \\qquad (\\star ) \\end{aligned}$$\\end{document}is considered in a smoothly bounded convex domain Omega subset mathbb {R}^3, with phi in W^{2,infty }(Omega ) and fin C^1(bar{Omega }times [0,infty );mathbb {R}^3), and with chi >0, rho in mathbb {R} and mu >0. As recent literature has shown, for all reasonably mild initial data a corresponding no-flux/no-flux/Dirichlet initial-boundary value problem possesses a global generalized solution, but the knowledge on its regularity properties has not yet exceeded some information on fairly basic integrability features. The present study reveals that whenever omega >0, requiring that ρmin{μ,μ32+ω}<η\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\frac{\\rho }{\\min \\{\\mu ,\\mu ^{\\frac{3}{2}+\\omega }\\}} < \\eta \\end{aligned}$$\\end{document}with some eta =eta (omega )>0, and that f satisfies a suitable assumption on ultimate smallness, is sufficient to ensure that each of these generalized solutions becomes eventually smooth and classical. Furthermore, under these hypotheses (star ) is seen to admit an absorbing set with respect to the topology in L^infty (Omega ). By trivially applying to the case when mu >0 is arbitrary and rho le 0, these results especially assert essentially unconditional statements on eventual regularity in taxis-reaction systems interacting with liquid environments, such as arising in contexts of models for broadcast spawning discussed in recent literature.
Read full abstract