Abstract
We obtain a global existence result for the three-dimensional Navier-Stokes equations with a large class of data allowing growth at spatial infinity. Namely, we show the global existence of suitable weak solutions when the initial data belongs to the weighted space $\mathring M^{2,2}_{\mathcal C}$ introduced in [Z. Bradshaw and I. Kukavica, Existence of suitable weak solutions to the Navier-Stokes equations for intermittent data, J. Math. Fluid Mech. to appear]. This class is strictly larger than currently available spaces of initial data for global existence and includes all locally square integrable discretely self-similar data. We also identify a sub-class of data for which solutions exhibit eventual regularity on a parabolic set in space-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.